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We show that the coherence of an electron spin interacting with a bath of nuclear spins can exhibit a
well-defined purely exponential decay for special �“narrowed”� bath initial conditions in the presence of a
strong applied magnetic field. This is in contrast to the typical case, where spin-bath dynamics have been
investigated in the non-Markovian limit, giving superexponential or power-law decay of correlation functions.
We calculate the relevant decoherence time T2 explicitly for free-induction decay and find a simple expression
with dependence on bath polarization, magnetic field, shape of the electron wave function, dimensionality, total
nuclear spin I, and isotopic concentration for experimentally relevant heteronuclear-spin systems.
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I. INTRODUCTION

There are many proposals to use the spin states of elec-
trons in confined structures for coherent manipulation, lead-
ing to applications in quantum information processing and,
ultimately, quantum computation.1–5 A series of recent ex-
periments on such spin states in quantum dots,6,7 electrons
bound to phosphorus donors in silicon,8 nitrogen vacancy
centers in diamond,4,9,10 and molecular magnets11,12 have
shown that the hyperfine interaction between confined elec-
tron spins and nuclear spins in the surrounding material is
the major obstacle to maintaining coherence in these sys-
tems.

Previous studies of this decoherence mechanism have
pointed to the non-Markovian nature of a slow nuclear-spin
environment, leading to nonexponential coherence
decay.13–25 These results suggest that it may be necessary to
revise quantum error correction protocols to accommodate
such a “nonstandard,” but ubiquitous environment.26 In the
present work, we show that virtual flip-flops between elec-
tron and nuclear spins can lead to a well-defined Markovian
dynamics, giving simple exponential decay in a large Zee-
man field and for particular initial conditions �a “narrowed”27

nuclear-spin state�. Moreover, we calculate the decoherence
time T2, revealing the dependence on many external param-
eters for a general system.

The rest of this paper is organized as follows: In Sec. II,
we introduce the Hamiltonian for the Fermi contact hyper-
fine interaction and derive an effective Hamiltonian for elec-
tron spin dynamics, which is valid in a strong magnetic field.
In Sec. III, we present the Markov approximation and its
range of validity, giving an analytical expression for the de-
coherence time T2. We also give bounds for the non-
Markovian corrections to our expression. Section IV gives a
discussion of the decoherence rate for a homonuclear system,
and in Sec. V we generalize these results for a heteronuclear-
spin bath, providing explicit analytical expressions for T2
within our Born-Markov approximation. We conclude in Sec.
VI and present additional technical details in Appendixes
A–D.

II. HAMILTONIAN

We begin from the Hamiltonian for the Fermi contact hy-
perfine interaction between a localized spin-1 /2 S and an
environment of nuclear spins,

Hhf = bSz + b�
k

�kIk
z + S · h, h = �

k

AkIk. �1�

Here, Ik is the nuclear-spin operator for the spin at site k with
associated hyperfine coupling constant Ak, b=g*�BB is the
electron Zeeman splitting in an applied magnetic field B and
�k is the nuclear gyromagnetic ratio in units of the electron
gyromagnetic ratio �we set �=1�: �k=gIk

�N /g*�B. For an
electron with an envelope wave function ��r�, we have
Ak=v0Aik���rk��2, where Aik is the total coupling constant to a
nuclear spin of species ik at site k and v0 is the volume of a
unit cell containing one nucleus. For convenience, we define
A=��i�i�Ai�2, where �i is the relative concentration of iso-
tope i. The envelope function ��r� of the bound electron has
a finite extent, and, consequently, there will be a finite num-
ber �N of nuclei with appreciable Ak. For typical quantum
dots, N�104–106, and for donor impurities or molecular
magnets, N�102–103. In Eq. �1�, we have neglected the
anisotropic hyperfine interaction, dipole-dipole interaction
between nuclear spins, and nuclear quadrupolar splitting,
which may be present for nuclear spin I�1 /2. The aniso-
tropic hyperfine interaction gives a small correction for elec-
trons in a primarily s-type conduction band,28 such as in
III-V semiconductors or Si. Nuclear dipole-dipole coupling
can give rise to dynamics in the spin bath, which can lead to
electron-spin decay due to spectral diffusion on a time scale
found to be TM �10–100 �s for GaAs quantum dots.14,29,30

These times are 1 to 2 orders of magnitude longer than the T2
we predict for a GaAs quantum dot carrying N=105 nuclei
�see Fig. 3 below�. For smaller systems, we expect the decay
mechanism discussed here to dominate dipole-dipole effects
substantially. The quadrupolar splitting has also been mea-
sured for nanostructures in GaAs, giving inverse coupling
strengths on the order of 100 �s,31 comparable to the dipole-
dipole coupling strength, so quadrupolar effects should be-
come relevant on comparable time scales.
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For large b, we divide Hhf=H0+Vff into an unperturbed
part H0 that preserves Sz and a term Vff=

1
2 �S+h−+S−h+� that

leads to energy nonconserving flip-flops between electron
and nuclear spins.15 We eliminate Vff to leading order

by performing a Schrieffer-Wolff-like transformation: H̄
=eSHhfe

−S�H=H0+ 1
2 �S ,Vff	, where S= 1

L0
Vff, and L0 is the

unperturbed Liouvillian, defined by L0O= �H0 ,O	. The re-
sulting effective Hamiltonian is of the form29,32 �see Appen-
dix B�

H = �� + X�Sz + D . �2�

The operators � and D are diagonal with respect to a
product-state basis of Ik

z eigenstates �k�Iik
mk
, whereas the

term X is purely off-diagonal in this basis, leading to corre-
lations between different nuclei. We neglect corrections to
the diagonal part of H of the order of �A2 /Nb, but retain the
term of this size in the off-diagonal part X. This approxima-
tion is justified since, as we will show, the bath correlation
time �c is much shorter than the time scale where these di-
agonal corrections become relevant for a sufficiently large
Zeeman splitting b	A, where a Born-Markov approxima-
tion is valid: �c�N /A
Nb /A2. In addition, we ignore cor-
rections to X that are smaller by the factors Ak /b�A /Nb

1 and �k�10−3. Under these approximations, the various
terms in Eq. �2� are given by �see also Appendix B�,

� � b + hz, D � b�
k

�kIk
z , �3�

X �
1

2�
k�l

AkAl

�
Ik

−Il
+. �4�

III. MARKOV APPROXIMATION

For large b, Hhf leads only to an incomplete decay of the
longitudinal spin �Sz
t.

15 However, it is still possible for the
transverse spin �S+
t to decay fully16 through a pure dephas-
ing process, which we now describe in detail. We assume
that the electron and nuclear systems are initially unen-
tangled with each other and that the nuclear-spin system is
prepared in a narrowed state �an eigenstate of the operator �:
��n
=�n�n
� through a sequence of weak measure-
ments,27,33,34 polarization pumping,35 frequency focusing un-
der pulsed optical excitation,36 or by any other means. For
these initial conditions, dynamics of the transverse electron
spin �S+
t are described by the exact equation of motion,15

�Ṡ+
t = i�n�S+
t − i

0

t

dt���t − t���S+
t�, �5�

��t� = − i Tr S+Le−iQLtQL�n
�n�S−. �6�

Here, L and Q are superoperators, defined by their action on
an arbitrary operator O: LO= �H ,O	, QO= �1− �n
�n�TrI�O,
where TrI indicates a partial trace over the nuclear-spin sys-
tem.

To remove fast oscillations in �S+
t, we transform to a
rotating frame, in which we define the coherence factor

xt=2 exp�−i��n+���t	�S+
t and associated memory kernel

�̃�t�=exp�−i��n+���t	��t�, with frequency shift deter-

mined self-consistently through ��=−Re�0

dt�̃�t�. Addition-

ally, we change integration variables to �= t− t�. The equation
of motion for xt then reads

ẋt = − i

0

t

d��̃���xt−�. �7�

If �̃��� decays to zero sufficiently quickly44 on the time scale
�c
T2, where T2 is the decay time of xt, we can approximate
xt−��xt and extend the upper limit on the integral to t→

�Markov approximation�, giving an exponential coherence
decay with a small error ��t�,

xt = exp�− t/T2�x0 + ��t�,
1

T2
= − Im 


0




dt�̃�t� . �8�

The non-Markovian correction ��t� can be bounded pre-

cisely if �̃�t� is known,37

���t�� � ���t��max = 2

0

t

dt��

t�




dt��̃�t��� . �9�

Equation �9� gives a hard bound on the validity of the Mar-
kov approximation and, consequently, any corrections to the
exponential decay formula. Figure 1 demonstrates an appli-
cation of Eqs. �8� and �9� for decay in a homonuclear-spin
system, which we discuss below.

IV. HOMONUCLEAR SYSTEM

If only one spin-carrying nuclear isotope is present,
�k=�, independent of the nuclear site. We then approximate
��t� to leading order in the perturbation V=XSz �Born
approximation, see Appendix C� by expanding Eq. �6�
through the iteration of the Dyson identity: e−iLQt
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FIG. 1. �Color online� Exponential decay xt=exp�−t /T2� �solid
line� and maximum error bounds xt� ���t��max �dashed lines�, found
by the numerical integration of Eq. �9� with parameters for a two-
dimensional quantum dot �before Eq. �14�	, I=3 /2 and A /b=1 /20.
For comparison, we show the decay curves for superexponential
forms exp�−�t /T2�2	 and exp�−�t /T2�4	 �dot-dashed lines� and rap-
idly decaying bath correlation function C�t� /C�0� �dotted line, see
Eqs. �10� and �11�	.

COISH, FISCHER, AND LOSS PHYSICAL REVIEW B 77, 125329 �2008�

125329-2



=e−iL0Qt− i�0
t dt�e−iL0Q�t−t��LVQe−iLQt�, where LVO= �V ,O	.

Higher-order corrections to the Born approximation will be
suppressed by the small parameter A /�n.15 Inserting the re-
sult into Eq. �8�, we find

1

T2
= Re 


0




dte−i��t�X�t�X
, X�t� = e−i�tXei�t. �10�

Here, �¯
= �n�¯ �n
 denotes an expectation value with re-
spect to the initial nuclear state. Equation �10� resembles the
standard result for pure dephasing in a weak coupling expan-
sion, where X�t� would represent the bath operator in the
interaction picture with an independent bath Hamiltonian.
However, for the spin bath, there is no such weak coupling
expansion, and X�t� appears in the interaction picture with �,
the same operator that provides an effective level splitting
for the system. Additionally, the general result for a hetero-
nuclear system including interspecies flip-flops cannot be
written in such a compact form.38

Previously, it has been shown that a Born-Markov ap-
proximation to second order in Vff leads to no decay.15 In
contrast, a Born-Markov approximation applied to the effec-
tive Hamiltonian leads directly to a result that is fourth order
in Vff �Eq. �10�	, describing the dynamics that become im-
portant at times longer than the second-order result. It is not
a priori obvious that the effective Hamiltonian, evaluated
only to second order in Vff, can be used to accurately calcu-
late rates to fourth order in Vff. We have, however, verified
that all results we present here are equivalent to a direct
calculation expanded to fourth order in Vff at leading order in
A /b
1.38

If the initial nuclear polarization is smooth on the scale of
the electron wave function, the matrix elements of operators
such as Ik

�Ik
� can be replaced by average values. Neglecting

corrections that are small in A /Nb
1, this gives �see also
Appendix D�

C�t� = �X�t�X�0�
 =
c+c−

4�n
2 �

k�l

Ak
2Al

2e−i�Ak−Al�t. �11�

Above, we have introduced the coefficients c�

= I�I+1�− ��m�m�1�

, and the double angle bracket indi-
cates an average over Ik

z eigenvalues m.15

In the limit N	1, we can include the term k= l in Eq. �11�
and perform the continuum limit �k→�dk with small correc-
tions. For an isotropic electron wave function of the form
��r�=��0�exp�−�r /r0�q /2	 containing N nuclei within radius
r0 in d dimensions, the hyperfine coupling constants are dis-
tributed according to Ak=A0 exp�−�k /N�q/d	, where k is a
non-negative index, and we choose A0 to normalize Ak ac-
cording to A=�0


dkAk �Ref. 15� �see also Appendix A�.
After performing the continuum limit, C�t� will decay,

with characteristic time �c given by the inverse bandwidth of
nuclear flip-flop excitations �c�1 /A0�N /A. For large b,
1 /T2 will be suppressed due to the smallness of X �see Eq.
�4�	, whereas �c remains fixed. At sufficiently large b, it will
therefore be possible to reach the Markovian regime, where
�c is short compared to T2: �c /T2
1. Evaluating the time
integral in Eq. �10�, we find the general result to leading
order in A /�n �see Appendix D�,

1

T2
=

�

4
c+c−f�d

q
�� A

�n
�2 A

N
, �12�

f�r� =
1

r
�1

3
�2r−1��2r − 1�

���r�	3 , r � 1/2. �13�

In Eq. �12�, A /N sets the scale for the maximum decay rate
in the perturbative regime, the coefficients c� set the depen-
dence on the initial nuclear polarization p �e.g., with I=1 /2,
we have c+c−= �1− p2� /4	, A /�n�1 gives the small param-
eter, which controls the Born approximation, and f�d /q� is a
geometrical factor �plotted in Fig. 2�. f�d /q� is exponentially
suppressed for d /q�1 �f�r�� �1 /3�2r−1�1 /r�r ,r�1	, but
f�d /q�→
 for d /q−1 /2→0+. Due to this divergence, no
Markov approximation is possible �within the Born approxi-
mation� for d /q�1 /2. We understand the divergence in
f�d /q� explicitly from the asymptotic dependence of C�t� at
long times: C�t��1 / t2d/q , t	N /A ,d /q�2.44 Surprisingly,
there is a difference of nearly two orders of magnitude in
1 /T2 going from a two-dimensional �2D� quantum dot with a
Gaussian envelope function �d=2, q=2, and d /q=1� to a
donor impurity with a hydrogenlike exponential wave func-
tion �d=3, q=1, and d /q=3� if all other parameters are fixed
�see Fig. 2�.

We now specialize to an initial uniform unpolarized spin
bath, which is nevertheless narrowed: ��n
=b�n
, with equal
populations of all nuclear Zeeman levels �i.e., ��m

=0 and
��m2

= 1

3 I�I+1�	. For a 2D quantum dot with a Gaussian
envelope function �d=q=2�, we find the following from Eqs.
�12� and �13�:

1

T2
=

�

3
� I�I + 1�A

3b
�2 A

N
. �14�

There are two remarkable features of this surprisingly
simple result. First, the condition for the validity of the Mar-
kov approximation, T2��c�N /A will be satisfied whenever
A /b�1, which is the same condition that validates a Born
approximation. Second, 1 /T2 has a very strong dependence
on the nuclear spin �1 /T2� I4�. Thus, systems with large-spin
nuclei such as In �IIn=9 /2� will show relatively significant
faster decay �see, e.g., Fig. 3�.
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FIG. 2. �Color online� Geometrical factor f�d /q� from Eq. �13�,
where d=1,2 ,3 is the dimension and q characterizes the electron
envelope function ��r�=��0�exp�−�r /r0�q /2	.
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V. HETERONUCLEAR SYSTEM

For sufficiently large b ���k−�k��b	 �Ak−Ak���A /N�, het-
eronuclear flip-flops between two isotopic species with dif-
ferent �k are forbidden due to energy conservation. In this
case, 1 /T2 is given in terms of an incoherent sum, 1 /T2=�
=�i�i, where �i is the contribution from flip-flops between
nuclei of the common species i. Assuming a uniform distri-
bution of all isotopes in a 2D quantum dot with a Gaussian
envelope function, we find �see also Appendix D�

�i =
1

T2
i = �i

2�

3
� Ii�Ii + 1�Ai

3b
�2Ai

N
. �15�

The quadratic dependence on isotopic concentration �i is par-
ticularly striking. Due to this dependence, electron spins in
GaAs, where Ga has two naturally occurring isotopic spe-
cies, whereas As has only one, will show a decay predomi-
nantly due to flip-flops between As spins. This is in spite of
the fact that all isotopes in GaAs have the same nuclear spin
and nominally similar hyperfine coupling constants �see Fig.
3�. Interestingly, we note that the relatively large flip-flop
rates for In and As, due to large nuclear spin and isotopic
concentration, respectively, may partly explain why only Ga
�and not In or As� spins have been seen to contribute to
coherent effects in experiments on electron transport through
�In /Ga�As quantum dots.39 The same effect may also explain
why polarization appears to be transferred more efficiently
from electrons to As �rather than Ga� in GaAs quantum
dots.40

VI. CONCLUSIONS

We have shown that a single electron spin can exhibit a
purely exponential decay for narrowed nuclear-spin-bath ini-
tial conditions and in the presence of a sufficiently large
electron Zeeman splitting b. This work may be important for
implementing existing quantum error correction schemes,
which typically assume exponential decay of correlation

functions due to a Markovian environment. In the limit of a
large Zeeman splitting b�A, where a Born-Markov approxi-
mation is valid, we have found explicit analytical expres-
sions for the decoherence time T2, giving explicit depen-
dences on the electron wave function, magnetic field, bath
polarization, nuclear spin, and isotopic abundance for a gen-
eral nuclear-spin bath. Moreover, within the Born-Markov
approximation, we have found a divergence in the decoher-
ence rate 1 /T2 for a one-dimensional quantum dot, indicating
a breakdown of the Markov approximation in this case.
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APPENDIX A: CONTINUUM LIMIT

In this appendix, we describe how the dimensionality d
and envelope wave function shape parameter q are defined.
For further details on the definition of these quantities, see
Ref. 15. For a homonuclear-spin system, the hyperfine cou-
pling constants are given by

Ak = Av0���rk��2, �A1�

where A is the total hyperfine coupling constant, v0 is the
volume occupied by a single-nucleus unit cell, and ��r� is
the electron envelope wave function. We assume an isotropic
electron envelope,

��rk� = ��0�exp�− �rk/r0�q/2	 , �A2�

where r0 is the effective Bohr radius, defined as the radial
distance enclosing N nuclear spins, and rk is the radial dis-
tance enclosing k spins. In d dimensions,

vol�k spins�
vol�N spins�

=
v0k

v0N
= � rk

aB
�d

. �A3�

Inserting Eqs. �A3� and �A2� into Eq. �A1�,

Ak = A0e−�k/N�q/d
. �A4�

To determine the k=0 coupling A0, we enforce the normal-
ization

�
k

Ak = Av0�
k

���rk��2 � A
 d3r���r��2 = A . �A5�

This gives

A = A0

0




dke−�k/N�q/d
. �A6�

Making the change of variables u= � k
N �q/d, we immediately

find

A = A0
d

q
N


0




duud/q−1e−u = A0N
d

q
��d

q
� , �A7�

which gives the final form for Ak,

0
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FIG. 3. �Color online� Decay rates for an InxGa1−xAs quantum
dot with In doping x=0.05. Here, we have assumed N=105 and

used values of �i and Ai for GaAs from Ref. 41: A
75As=86 �eV,

A
69Ga=74 �eV, A

71Ga=96 �eV, �75As=0.5, �69Ga=0.3�1−x�, and
�71Ga=0.2�1−x�. The hyperfine coupling for In in InAs was taken

from Ref. 42: A
113In�A

115In�AIn=170 �eV, �In=x /2.
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Ak =
A

N
d

q
��d

q
� e−�k/N�q/d

. �A8�

APPENDIX B: EFFECTIVE HAMILTONIAN

In this appendix, we give details leading to the derivation
of the effective Hamiltonian, described by Eqs. �2�–�4� of the
main text. Similar effective Hamiltonians have been derived
previously in Refs. 32 and 29, but due to some differences in
method and approximation, we give additional details here
for the interested reader. We begin from the hyperfine Hamil-
tonian,

Hhf = H0 + Vff, �B1�

H0 = �b + hz�Sz + b�
k

�kIk
z , �B2�

Vff =
1

2
�S+h− + S−h+� , �B3�

h = �
k

AkIk. �B4�

To find an effective Hamiltonian that eliminates the flip-flop
term Vff at leading order, we apply a unitary transformation,

H̄ = eSHhfe
−S, �B5�

where S=−S† to ensure unitarity. We now expand Eq. �B5� in
powers of S, retaining terms up to O�Vff

3 �, assuming
S�O�Vff�,

H̄ = H0 + Vff − �H0,S	 − �Vff,S	 +
1

2
�S,�S,H0		 + O�Vff

3 � .

�B6�

To eliminate Vff at leading order, we must choose S to satisfy
Vff− �H0 ,S	=0. The S that satisfies this relation is given by

S =
1

L0
Vff, L0O = �H0,O	 , �B7�

which is of order Vff, justifying our previous assumption:
S�O�Vff�. Reinserting Eq. �B7� into Eq. �B6�, we find the
following up to corrections that are third or higher order
in Vff:

H̄ = H + O�Vff
3 � , �B8�

H = H0 +
1

2
�S,Vff	 . �B9�

Directly evaluating Eq. �B7� with H0 defined in Eq. �B2� and
Vff defined in Eq. �B3� gives

S =
1

2�
k

Ak� 1

b + hz +
Ak

2
− b�k

S+Ik
− −

1

b + hz −
Ak

2
− b�k

S−Ik
+� .

�B10�

Inserting Eq. �B10� into Eq. �B9� gives

H = �↑
�↑ �H↑ + �↓
�↓ �H↓, �B11�

H↑ =
1

2
�b + hz� + b�

k

�kIk
z + h↑, �B12�

H↓ = −
1

2
�b + hz� + b�

k

�kIk
z − h↓. �B13�

Here, the contributions resulting from the second-order term
in Vff are given explicitly by

h↑ =
1

8�
kl

AkAl� 1

b + hz + Ak/2 − b�k
Ik

−Il
+

+ Il
− 1

b + hz − Ak/2 − b�k
Ik

+� , �B14�

h↓ =
1

8�
kl

AkAl� 1

b + hz − Ak/2 − b�k
Ik

+Il
−

+ Il
+ 1

b + hz + Ak/2 − b�k
Ik

−� . �B15�

We can rewrite H in terms of spin operators using
�↑ 
�↑�= 1

2 +Sz and �↓ 
�↓�= 1
2 −Sz, which gives Eq. �2� from the

main text,

H = �� + X�Sz + D , �B16�

X = �1 − Pd��h↑ + h↓� , �B17�

D = b�
k

�kIk
z +

1

2
�h↑ − h↓� , �B18�

� = b + hz + Pd�h↑ + h↓� . �B19�

In the above expressions, we have introduced the diagonal
projection superoperator PdO=�l�l
�l��l�O�l
, where the in-
dex l runs over all nuclear-spin product states �l
= �k�Ikmk

l 
.
We now apply the commutation relation �Ik

+ , Il
−	=2Ik

z�kl and
expand the prefactors in Eqs. �B14� and �B15� in terms of the
smallness parameter

Ak

b+hz−b�k
� 1

N
A
b 
1. At leading order in

the expansion, we find h↑,↓�h↑,↓
�0�, where

h↑
�0� =

1

8�
kl

AkAl

b + hz − b�k
�Ik

−Il
+ + Il

−Ik
+� , �B20�

h↓
�0� =

1

8�
kl

AkAl

b + hz − b�k
�Ik

+Il
− + Il

+Ik
−� . �B21�

By commuting the nuclear-spin operators, Eqs. �B20� and
�B21� can be rewritten to give
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h↓
�0� = h↑

�0� +
1

2�
k

Ak
2

b + hz − b�k
Ik

z . �B22�

This relation allows us to approximate the various terms in
Eqs. �B17�–�B19�,

X � �1 − Pd��2h↑
�0�� =

1

4�
k�l

AkAl

b + hz − b�k
�Ik

−Il
+ + Il

−Ik
+� ,

�B23�

D � �
k
�b�k −

Ak
2

4�b + hz − b�k�
�Ik

z , �B24�

� � b + hz + Pd�2h↑
�0�� +

1

2�
k

Ak
2

b + hz − b�k
Ik

z , �B25�

or

� � b + hz +
1

2�
k

Ak
2

b + hz − b�k
�Ik�Ik + 1� − �Ik

z�2	 .

�B26�

Neglecting further corrections that are smaller by the factor
b�k /���k�10−3 in Eq. �B23� and terms of order

��k
Ak

2

b+hz−b�k
� A2

Nb in Eqs. �B24� and �B26�, we arrive imme-
diately at Eqs. �3� and �4� of the main text. The terms of
order �A2 /Nb may become important on a time scale
��Nb /A2. In our treatment, this time scale is long compared
to the bath correlation time �c�N /A in the perturbative re-
gime A /b�1, and so neglecting these terms is justified.

APPENDIX C: BORN APPROXIMATION

In this appendix, we give further details on the Born ap-
proximation. We begin from the equation of motion for the
transverse spin in the rotating frame xt after applying the
Markov approximation, neglecting the correction ��t� �fol-
lowing Eq. �7�	,

ẋt = − i

0




d��̃���xt, �C1�

�̃�t� = e−i��n+���t��t� , �C2�

��t� = − i Tr S+LQe−iLQtLQ�n
�n�S−. �C3�

In general, it is not simple to find the exact form of the
self-energy �memory kernel� ��t�. Fortunately, it is possible
to generate a systematic expansion in the perturbation
V=XSz�1 /b, valid for a sufficiently large Zeeman splitting
b�A,15

��t� = ��2��t� + ��4��t� + ¯ , �C4�

where ��n��t� indicates a term of order �O�Vn��O�� A
b �n	.

The expansion is performed most conveniently in terms of
the Laplace-transformed variable,

��s� = L���t�	 = 

0




dte−st��t� . �C5�

We expand the propagator L�e−iLQt	= 1
s+iLQ by dividing the

full Liouvillian into unperturbed and perturbed parts:
L=L0+LV, where L0 and LV are defined by their action on an
arbitrary operator O through L0O= �H0 ,O	 and LVO= �V ,O	.
To obtain an expansion in terms of the perturbation LV, we
now iterate the Dyson identity in Laplace space,

1

s + iLQ
=

1

s + iL0Q
− i

1

s + iL0Q
LVQ

1

s + iL0Q
+ O�LV

2� .

�C6�

Inserting the iterated expression �Eq. �C6�	 into the Laplace-
transformed version of Eq. �C3�, we find that the self-energy
in the Born approximation �to second order in V� is

��2��s� = − i Tr�S+�1 − iL0Q
1

s + iL0
�LV

1

s + iL0
LV�n
�n�S−� .

�C7�

We have simplified the above expression using the following
identities for the projection superoperators Q=1− �n
�n�TrI
and P=1−Q:

PL0P = L0P , �C8�

PLV�n
�n� = 0, �C9�

QL0Q = QL0, �C10�

which can be proven directly. To further reduce the above
expression, we evaluate the action of L0 and LV on the
electron-spin operator S−,

LVS− = −
1

2
LX

+S−, �C11�

L0S− = �−
1

2
L�

+ + LD�S−, �C12�

where

LX
+O = �X,O	+, �C13�

L�
+O = ��,O	+, �C14�

LDO = �D,O	 , �C15�

and here we denote anticommutators with a � subscript:
�A ,B	+=AB+BA. This leads to

��2��s� = −
i

4
TrI��1 +

i

2
L�

+Q
1

s −
i

2
L�

+ �
�LX

+ 1

s + i�LD −
1

2
L�

+�LX
+�n
�n�� . �C16�

Now, noting that
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Q�n
�n� = 0, �C17�

Q�k
�k� = �k
�k� − �n
�n� , �C18�

we can evaluate Eq. �C16� directly, giving

��2��s + i�n� = −
i

2�
k

�Xkn�2� s +
i

2
��nk

s + i��nk
�

�� 1

s + i��Dkn +
1

2
��nk�

+
1

s − i��Dkn −
1

2
��nk�� , �C19�

where �Dkn=Dk−Dn, ��nk=�n−�k, and �k and Dk are the
eigenvalues associated with eigenstate �k
: ��k
=�k�k
 and
D�k
=Dk�k
. Additionally, we have denoted Xkn= �k�X�n
.

From Eqs. �C1�, �C2�, and �C5�, the electron-spin deco-
herence rate within a Born-Markov approximation will now
be given by

1

T2
= − Im ��2��s = i��n + ��� + 0+	 , �C20�

where 0+ denotes a positive infinitesimal. Our goal here is to
find the leading-order dependence of 1 /T2 on 1 /b for
a large Zeeman splitting: b�A. We therefore set
��=−Re ��2��s= i��n+���+0+	�O� A

N � A
b �2��0 since this

term will lead to higher-order corrections in 1 /b within the
perturbative regime. Additionally, noting that the matrix ele-
ment Xkn induces a flip-flop for spins at two sites k1,2, we
find ��Dkn�= �b��k1

−�k2
�� and ���kn�= �Ak1

−Ak2
�. In the case

of a homonuclear system �k1
=�k2

, we can set �Dkn=0 in Eq.
�C19�. Otherwise, in a sufficiently large magnetic field
�b��k1

−�k2
��� �Ak1

−Ak2
�, we find a negligible contribution to

the decoherence rate for terms from two different isotopic
species �where �k1

��k2
�; i.e., heteronuclear flip-flops no

longer conserve energy, although homonuclear flip-flops �for
which �k1

=�k2
� will still occur. Restricting the sum to homo-

nuclear flip-flops and setting �Dnk=0 in this regime gives

��2��s + i�n� = − i�
j

�
k

�Xkn
j �2

1

s + i��nk
, �C21�

where Xkn
j = �k�Xj�n
 and Xj is restricted to run over flip-flops

between nuclei of the common species j at sites denoted by
the indices kj and lj;

Xj =
1

2 �
kj�lj

Akj

j Alj

j

�
Ikj

− Ilj

+. �C22�

Inserting Eq. �C21� for a homonuclear system �one isotopic
species j� into Eq. �C20� and inverting the Laplace transform
leads directly to Eq. �10� of the main text.

APPENDIX D: DECOHERENCE RATE

Applying Eq. �C20� �setting ���0� with Eq. �C21� gives
the rate

1

T2
= ��

j
�

k

�Xkn
j �2����kn� , �D1�

which can be found directly from the formula

1

x � i0+ = P1

x
� i���x� , �D2�

where P indicates that the principal value should be taken in
any integral over x. Rewriting Eq. �D1� using the definition
of Xj given in Eq. �C22�,

1

T2
=

�

4 �
j

�
kj�lj

c−
jkjc+

jlj

�k�n
�Akj

j �2�Alj

j �2��Akj

j − Alj

j � , �D3�

where kj and lj are restricted to run over sites occupied by
isotopic species j. The coefficients c�

jkj give the expectation
value of the operator Ikj

�Ikj

� with respect to the initial state,

c�
jkj = �n�Ikj

�Ikj

��n
 , �D4�

=Ij�Ij + 1� − �n�Ikj

z �Ikj

z � 1��n
 . �D5�

With small corrections of order A /Nb
1, we can replace
�k��n in the denominator of Eq. �D3�. If the various
nuclear isotopes are uniformly distributed with isotopic con-
centrations � j, we allow the sum over kj and lj to extend over
all sites k and l at the expense of a weight factor � j for each
index,

�
kj�lj

� � j
2�

k�l

. �D6�

Additionally, we assume that the system is uniformly polar-
ized on the scale of variation of the hyperfine coupling con-
stants so that the coefficients c�

jk can be replaced by average
values c�

j = ��c�
jk

 �double angle brackets indicate an average

over all sites� and taken out of the sum. Finally, we change
the sums over sites to a double integral using the prescription
and coupling constants described in Appendix A, neglecting
the small O�1 /N� correction due to the requirement k� l,

�
k�l

→ 

0




dk

0




dl . �D7�

These approximations give

EXPONENTIAL DECAY IN A SPIN BATH PHYSICAL REVIEW B 77, 125329 �2008�

125329-7



1

T2
=

�

4�n
2�

j

� j
2c−

j c+
j


0




dk

0




dl�Ak
j�2�Al

j�2��Ak
j − Al

j� .

�D8�

Inserting the coupling constants defined by Eq. �A8� and
evaluating the integrals gives

1

T2
=

�

4
f�d

q
��

j

� j
2c−

j c+
j Aj

N
� Aj

�n
�2

, �D9�

with the geometrical factor f�d /q� given by Eq. �13� of the
main text. Equation �D9� reduces to Eqs. �12�, �14�, and �15�
of the main text in the special cases discussed there.
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